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J. Phys. A: Gen. Phys., 1970, Vol. 3. Printedin Great Britain 

Absorption and refraction of radiation by liquids 
I. Refraction by pure liquids 

L. A. DISSADO 
Research School of Chemistry, The Institute of Advanced Studies, 
Australian National University, Canberra, Box 4 P.O., A.C.T. 2600, Australia 
MS.  received 19th February 1970 

Abstract. Expressions for the dielectric constant of a pure liquid are obtained 
from quantum electrodynamics, and compared with those obtained from 
electrostatic arguments. The Lorentz cavity field is shown to be associated 
with off-resonance intermolecular exchange of excitation. An application of 
perturbation theory up to a level including such excitation exchange leads to 
the Debye equation for pure non-polar liquids, and an analogue of the Onsager 
equation for polar liquids. 

1. Introduction 
The  refractive index and dielectric constant of condensed phase systems are often 

described in terms of the polarizabilities of the constituent molecules. Each molecule 
is considered to contribute to the bulk property as if it alone were present, the effect 
of the surrounding molecules upon its contribution being neglected. Any allowance 
for the bulk effect of the medium upon a particular molecule is made by an electro- 
static modification of the bulk property that is to be calculated. Thus the electric 
field at a molecule is given in terms of the applied field by the Lorentz cavity field. 
The  molecular property is then calculated as though the effective local field were the 
applied field. 

In  an earlier paper (Dissado 1970 a) the operator (l), formally similar to (4) given 
by Power and Zienau (1957), was derived for interaction between solute molecules 
and the medium radiation field, valid in the dipole approximation 

with effective solute transition dipole moment qmS( r )  given by 

I n  finding (1) the polarization field produced by an electromagnetic wave is written 
as a sum of the expectation value of the transition dipole moment operator over all 
the states of a molecule and over all the molecular sites. This polarization is then 
separated into two parts, one for the medium, the other the solute polarization. The  
solute polarization may here be due either to a transition of a molecule of the same 
species as those of the medium (system contains only one molecular species), or to 
those of a molecule of a different species (the solute) embedded in small concentration 
in a dielectric of different species (the solvent). The  solute transition must be one 
which is dipole allowed and'with an absorption band that has no appreciable overlap 
with that of the medium. If the medium is considered to be a uniform isotropic 
dielectric of unit magnetic permeability all interactions between the electromagnetic 
field and the medium can be absorbed into the operator (1) connecting an effective 
solute transition dipole moment (2) and an effective medium field. I n  (1) and (2) 

595 



5 96 L. A. Dissado 

nm is the medium refractive index at the frequency of solute absorption. The  effective 
field is 

in the usual notation. The  operator (1) goes over into the usual field-dipole operator 
(4) (Power and Zienau 1957) for unit refractive index: 

Hi,, = - 2 qt(r) I E y r )  (4) 
t 

which gives the interaction as a sum over all possible transitions; (1) replaces the 
sum by an interaction between the effective field and effective transition dipole of a 
state coupled strongly to the electromagnetic field (close to the absorption peak). 
The  transition dipole moment operator has been replaced by the expectation value for 
the isolated molecule in (1) and (4). In  this form operator (1) is correct to the first- 
order of perturbation theory in medium-field interactions. It may be applied to the 
calculation of the intermolecular resonance interaction energy (5) between two mole- 
cules embedded in a dielectric (Dissado 1970 a) : 

with xi, = aij-I?liI?lj and Pij = Sij-3RiRj, i and j being components in a suitable 
coordinate frame. R is the intermolecular separation and Am = X/2rnm the reduced 
transition wavelength in the medium. 

2. Derivation of the dielectric constant and refractive index 
2.1. Pure liquid of isotropic molecules 

The operator (1) will be used to determine the equations relating refractive 
indices and dielectric constants of a condensed medium with the spectroscopic pro- 
perties of the individual molecules. In deriving these relationships, the Heitler-Ma 
(Heitler 1954) theory of radiation damping will be applied to a system consisting of a 
pure liquid and an electromagnetic wave. The  initial state has all molecules in their 
ground state, no photons of the incident electromagnetic wave having been absorbed, 
An arbitrary state y describes a situation in which one photon has been absorbed by 
a molecule which is now in the excited state y .  

In  the general theory the amplitudes of the initial state 0, and statey, as a function 
of time are then given by bo and by respectively. 

i Se d E  exp{i(Eo -E) t / f i }  
bo(t) = - 

277 - m  E-Eo+ihI’(E)/2 

r ( E )  and U,,(E) are found by solving the coupled equations (8): 

iX’(E)/2 = iHoo + i 2 Ho,S(E-E,)Umo(E) 
m # O  

Uyo(E) = H y o  + 2 HymS(E--m)UmO(E) 
m # O  
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and 
<(E-E,) = l im(E+iq-Em)- l .  

11+0 

The H,, are matrix elements of the interaction operator (1) for states y and m diagonal 
in the unperturbed Hamiltonian for the radiation field HRAD, and free molecules 
HInOl. 

In  the liquid the state y is no longer that of a free molecule, but of the molecules 
collectively. The  yth transition of the collection (energy E,) is excited by an electro- 
magnetic wave (initial state 0) containing both positive and negative frequency 
components. The  coupling of the light to the remaining liquid states is to be absorbed 
into the interaction operator as that of a medium whose dielectric is ( R ’ ) ~ .  Here (TZ’)~  - 1 
is the value of the contribution of the other medium states to the dielectric constant 
measured at the frequency of the transition to the yth state. 

The  problem of choosing a wave function to represent the state y now arises. 
As in a solid the liquid is a set of N molecules, having N-fold degeneracy for the 
Hamiltonian Hmol, but the crystalline solid possesses permanent translational sym- 
metry in the lattice which allows the use of the Eloch functions (9a) as wave functions 
(Craig and Walmsley 1968). 

2 exp(iK .P)4PY 
$,(K) = - (N)1’2 ( 9 4  

where the site function 4py is a product wave function of all the single molecule 
wave functions, with only the molecule whose centre is at the vector position p 
excited to the state y ,  all other molecules being in the ground state. K is a wave 
vector having the magnitude of reciprocal length. The  wave functions (9a) describe 
a set of states (exciton band), one for each (mechanical) wave vector K ,  stationary 
with respect to a Hamiltonian including only Coulumb interactions. Excitation of the 
crystal by an electromagnetic wave of the same frequency as the transition restricts 
the states excited to one having the same wave vector as the incident wave. This value 
is obtained from a self-consistent solution of the expression relating the wave vector 
of the electromagnetic field and its circular frequency. It is, however, often assumed 
to be the value for the field in vacuo, which for optical transitions is taken to be zero. 
For thin crystals (dimension along the wave path less than one wavelength) the equality 
condition breaks down and all exciton states couple to the field of which the wave 
vector is determined by the dispersion expression. 

In  the case of a liquid there is no permanent order and functions (9a) do not des- 
cribe stationary states. However, the presence of an electromagnetic field (of plane 
wave form) external to the liquid will produce in the liquid a polarization wave having 
plane-wave characteristics, of arbitrary wave vector K’. It is the properties of this 
wave that we measure, i.e., the refractive index n and spatial attenuation K which are 
determined by the real and imaginary parts of K’ for a given real circular frequency 
W .  These in turn depend on the energy of an excited molecule in the presence of the 
polarization produced by the electromagnetic field. The  value of K’ must therefore 
be obtained by self-consistent methods. I n  order to relate the factors determining 
n and K for the polarization wave, we write this wave in terms of its Fourier compon- 
ents, normalized to the liquid (or crystal) boundaries. Each of these components 
have wave vectors K determined by the boundary conditions which relate the internal 
and external values of the electric, magnetic and displacement fields (Kliewer and 



598 L. A. Dissado 

Fuchs 1966). If the dimensions of the liquid are large the components of K along each 
of three perpendicular axes are given by 

2Ka = 0,mn-  

where m is an integer and 2a the thickness along the appropriate coordinate. Only 
in the case of a crystal which possesses translational symmetry can K be written in 
terms of translations which leave the crystal unchanged (with the assumption of perio- 
dic boundary conditions), as required for Bloch functions. 

When the Fourier components are summed over all allowable transitions the form 
of the polarization wave is given by (9b): 

c c c exp(iK * PI+,” 
(9b) 

t K P  
+(K’) = (N)1/2 

The polarization wave of arbitrary frequency o has thus been written as being made 
up of all the allowable transitions t of the liquid. When o is equal to the frequency 
of a particular transition, absorption occurs and the polarization is due to that transi- 
tion only. For the model considered here the frequency is taken to be close to the 
transition y, the polarization being written as the effective polarization of that state, 
the contribution due to all other states being absorbed into the refractive index n‘. 
This leads to an effective dipole moment operator (Dissado 1970 a) for the state y. 
Using the effective dipole moment operator, the polarization wave can be represented 

A finite response time will be required for the molecular polarization to be pro- 
duced by the exciting field (about s for electronic transitions). Although the 
liquid possesses no permanent order there will be an instantaneous arrangement 
during the response time. 

An average should be taken over all arrangements; thus the molecular wave func- 
tion +pv  must be taken as referring to a molecule possessing an average orientation. It 
is of course essential to the argument that the molecules be isotropic, so that the 
transition dipoles are always in the direction of the electric intensity, and normal to 
the propagation direction of the field. The  polarization wave defining the energy of 
an excited molecule and described by (9c) with an arbitrary value of K’ might thus 
be thought of as a linear combination of instantaneous stationary states similarly to 
the thin crystal result. 

As will be shown, the measurable properties (n and K )  of the electromagnetic field 
depend upon the modulus of the square of the matrix element coupling the field and 
the molecular states, which is proportional to the square of the transition dipole 
moment component along the direction of the electric field vector. For a liquid this 
must be averaged over all orientations, we therefore take the transition dipole 
moment of the wave function + p Y  as the root-mean-square value ($) of the component 
of the transition dipole moment in the direction of the electric field vector. The  direc- 
tion of the mean transition dipole moment is taken to be along the electric field vector. 

The  operator (1) only connects states in which the number of photons and excited 
molecules change by one. Hence the matrix element H,, is zero for molecules possess- 
ing no permanent dipole moment. 
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In  solving equations (8) for UyK,O, intermolecular interactions are allowed for by 
inclusion of the states m in (10). Since the system is a pure liquid there is only one 
solute transition ( y )  to be considered. The interactions are resonance interactions, 
hence (10) will give an energy shift without a correction to the wave function. 

uyK,O = HyK,O+ 2 HyK,mC(E-Em)Um(E)* (10) 
m i 0  

The only states m for which H u K , , ,  is non-zero, are those containing either one photon 
or one photon and two excited molecules. The  matrix element Umo(E) for these 
states is taken to the first non-vanishing order only. 

The  coupled equations can then be solved as for the crystal (Craig and Dissado 
1968) to give 

where = HyK,O-+iKy(E) K ) U ~ K , O ( E ) c ( E -  EyK) (11) 

f, A, being the wave vectr and polarization index respectively of the photon in the 
intermediate state. An expression of this form for n' = 1 has been evaluated by 
Philpott (1968) giving y(E,  K )  as 

x exp(iK. R ) .  (12) 

k' is the magnitude of the wave vector appropriate to the energy E, which is that of 
the coupled radiation plus polarization field system. The real part of iy(E, K )  is 
the sum of the intermolecular interactions (9, the imaginary part being the radiative 
damping factor for the condensed state (Craig and Dissado 1968). 

Substituting (11) into integral (7) we obtain 

We have now to examine the initiation state 0. This is made up of two components of 
energy AcQIn' and- AcQln' respectively, Q being the wave vector for the coupled field. 
The ground-state energy being taken as an energy zero. The first component cor- 
responds to the photon that is absorbed, the second component to initial emission of a 
real photon of energy &cQ/n'. The matrix element H y K , o  for the second component 
is thus opposite in sign to that for the first: 

HyK, + Q  - H ~ K ,  - Q' (14) 
All other matrix elements involving the initial state 0 are identical for the two 
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components. The  complete expression for byK(t)  is 

dwIH,,,Qlexp(i(w~-w)t) 
by,(t) = - 

(15) - 1 
2~ i s  - 

x ( w  - cQ/nf + ir(w)/2 w + cQ/n' + ir(w)/2 

( w  - wy + iy(w, K ) / 2 )  

where w and wy are the circular frequencies of the coupled state (energy E )  'and 
unperturbed molecular state (energy E Y )  respectively. The  energies of the coupled 
state are given by the poles of this integral, which occur on the second Riemann Sheet 
(Goldberger and Watson 1964). The  poles are obtained by solving equation (16)) 
where ir(w) and iy(w, K) are evaluated on the second Riemann Sheet. 

(16) [~WI'(W)-I'~(O)/~+(W~-Q*C~/(~')~)]{U- wU+iy(w, K)/2) = 0. 

I?( w )  is found from (1 1) and (8) : 

but the matrix element HyK,Q may be written as 

where A is a factor independent of the vector position p .  The liquid is regarded as 
being continuous, allowing us to replace the sum over molecular centres with a volume 
integral. If we choose the direction of Q - K as the x axis of a Cartesian coordinate 
system with a as the coordinates of the boundaries along this axis, we have 

I n  the limit of lKa1 very large the integral is a representation of the Dirac delta 
function 6(K - Q )  which reduces the sum over K in (17) to a single term, that of K 
equal to Q. Thus the equality of the wave vector of the exciting electromagnetic field 
and the polarization wave is explicitly confirmed. It is to be noted that this condition 
applies in all cases (excepting strong absorption) independently of the use of boundary 
conditions, periodic or otherwise, to define the allowed values of K .  The breakdown 
of the delta function property for small values of IKal is shown here explicitly. I n  
this case the electromagnetic field couples to all of the waves defined by K and (9c) 
represents the Fourier components of the electromagnetic field in the liquid, the 
amplitude of each component being given by 

sin{@ - K)a) 

(Q  - 
and the energy of an excited molecule in such a field may be written either as the sum 
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over that due to each of the Fourier components or as that due to a polarization field 
of wave vector Q whose value is determined from a self-consistent solution of the dis- 
persion expression. P ( w )  is very small compared with w and may be neglected. 
(16) becomes 

- 2 w j H , , , ~ / ~ + ( ~ ~ - Q ~ c ~ / ( n ’ ) ~ } ( ~ - ~ ~ + i y ( ~ ,  Q)/2> = 0 (19) 
and on rearrangement, with the use of 

-- - d = n 2  c2Q2 
0 2  

an expression (21) is obtained for the dielectric constant d. 

Evaluation of ( H y K , Q )  reduces (21) to - 
4nN(qy . eA)2w,  

V w {  w - iy( w , Q)/2 - w> * 
n2 = 

Here (4” . e J 2  denotes the average of the square of the component of the transition 
dipole moment for the yth state in the direction of polarization of the light, We note 
that in a solid of anisotropic molecules the orientation of the transition moment is fixed, 
and not averaged as here. N/V in (22) may be taken to be l /Vo  where Yo is the mole- 
cular volume, if the volume of the liquid is large enough to be the volume of quantiza- 
tion. This should be at least a cube of side A, the wavelength of the incident wave. 

The  relationship (22) brings out the physical significance of the interaction opera- 
tor (1). izll the states of the medium that have been removed from explicit considera- 
tion in the Hamiltonian contribute n’ to the refractive index. This contribution has 
been returned to the equation by use of the modified interaction operator, 

The  derivation of (1) replaces the transition dipole moment operator of the mole- 
cule by the contribution to the polarization of the expectation value (in the condensed 
state) for each molecular transition. The  wave function from which the expectation 
values are obtained should be the exact wave function for the molecular system. 
The  operator (4) may then be written in matrix form as 

where (4)  is a diagonal matrix whose elements are q t ( r ) ,  the expectation value of the 
transition dipole moment operator obtained using the exact wave function for the 
collective state t of the system. The  operator (1) is the reduction of this matrix to a 
single equivalent interaction between an effective dipole moment for the state s, and 
the medium field. 

So far the expectation values used have been those for an isolated molecule. This 
is the zero-order approximation (in intermolecular coupling) and allows only for inter- 
molecular resonance interactions. Inclusion of non-resonance intermolecular inter- 
actions (§  2.2) requires the corrections of the wave function (9b) from which the 
transition dipole moment is obtained. The  coupling matrix will then connect the 
field with expectation values of the transition dipole moment corrected for all inter- 
molecular interactions. Subsequent use of the operator (1) is then equivalent to the 
reduction of this matrix. 
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2.2. First-order correction to the transition dipoles 
In  this case the dipoles 

dipoles Q?ic, and (22 )  becomes 
are now replaced by the fully corrected transition 

4 x ~ ( q = .  ep”)2wy 
n2 = ( T Z ’ ) ~ +  (23 ) 

V w ( w ,  - iYC(W, Q ) / 2  - 4)’ 
Here yc(w,  Q )  contains all the intermolecular interactions for the state y .  For fre- 
quencies far from resonance (23) becomes 

We are now concerned with obtaining q““ in terms of and n’. This will lead to a 
new refractive index equation, and give expressions for the medium corrected dipole 
examined in part I1 (Dissado 1970 b-to be referred to as 11.) 

Expressions (22)-(24) depend only on the average component of q y  parallel to 
the polarization vector e,. Thus we continue to work with isotropic molecules and 
shall use a model in which all the transition dipoles lie along the polarization vector, 
and possess a magnitude q. The interaction operator (4) for photons in free space 
is now appropriate, since non-resonance interaction with all other medium states is 
to be taken into account separately. The coupling matrix will then be reduced by 
use of the operator (1) to connect the exciting wave and the state y. 

Philpott (1966) has derived an expression for the coupling matrix correct to the 
third-order of perturbation theory. In  this order all intermolecular interactions 
between states containing only one excited molecule are included. The form of the 
corrected dipole moment is given by 

The  first sum in (25) is over molecular states and k, is the wave-vector for the transi- 
tion to the yth state. The  term having the denominator (E,  + E,), does not appear in 
the static correction to the wave function to the first order of perturbation theory. 
The second correction to the energy (fourth order in the molecule field coupling 
and second order in the static theory) contains a term with denominator E ,  + E,. 
In  the static theory it is from interactions between states with one excited molecule 
and those with three. Since correction of the wave function to the first order 
should give the energy correct to the third order, the presence of a term for the first- 
order corrected transition dipole with a denominator E ,  + E* is to be expected. Its 
absence from the static theory is bound up with the use of ground state functions which 
only allow for molecules in their ground state and the use of the field-molecule 
interaction operator to carry interactions between molecules gives the correct con- 
sistent expressions for the transition dipole and the energy. The neglect of this term 
in the static theory must be remembered when identification is made of matrix 
elements with the refractive index in 11. 
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We shall take the Coulomb limit of the retarded interaction V(R, Ay)! since the 
sum of the retarded interactions gives oscillating surface-dependent terms in addition 
to the Coulomb contribution. These extra terms are required to satisfy the boundary 
conditions and do not contribute to the interaction energy. Thus (25) becomes 

The  intermolecular interaction sum can be evaluated for a continuous medium by 
integration : - -- 

1 Pixcqiy 
i i  - - 2 exp(iK . R )  - 

R # O  R3 - V o /  R3 
exp(iK.  R )  -----Pli d3R qixcqiy 

4rr -- 
3 v  

= - - q i l c q j y ( s i j  - 3RiRj) .  (28) 

The  medium is considered to be continuous up to the boundary of the molecule, hence 
the lower limit of the integral in (28) is the molecular radius Y .  The value given in 
(28) is obtained in the limit of Y = 0, for a small non-zero value of Y the leading cor- 
rection term is of the order of ( I K ~ Y ) ~  which can be neglected for magnitudes of jK1 
less than those corresponding to x-ray frequencies. Since q F a n d  q T a r e  parallel 
and lie along eh perpendicular to K ,  (equal to Q for the polarization wave) (28) is 
independent of K ,  both in magnitude and direction. Thus (28) becomes 

4n -- 
3 v  

- - q i x c q i y ,  

Under the restrictive conditions on the transition moments, an identical result is 
obtained for the more usual wave functions $y(K = 0). Substituting in (25) and 
rearranging we obtain qx: 

From (24) we see that the correction factor is one third the contribution to the refrac- 
tive index of all states other than y, at the transition frequency of y .  It is therefore 
(n’z - 1)/3 which gives the corrected transition dipole moment as 

The  correction obtained is identical with that found electrostatically by use of the 
Lorentz cavity field. This can be further demonstrated by substituting in (23) which 
on arrangement gives the Debye equation. Remembering that 

we obtain 
n2- 1 n r 2 -  1 ( 4 r r / 3 ~ 0 ) ( ~ ) 2 ( w y / w ) ( ( n ’ 2 + 2 ) / ( n 2 + 2 ) )  
n2+2 n’2+2 wy - iyc(w, Q ) / 2  - w 

+ -- -- 

which on taking n’ N n for the correction factor gives the refractive index equation 
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as obtained electrostatically using the Lorentz cavity field. The correction to the 
effective field due to polarization on the cavity wall, which forms the electrostatic 
Lorentz field, is now seen to be associated with non-resonance intermolecular inter- 
action, and would be effective for a classical permanent dipole embedded in an iso- 
tropic dielectric as well as for the dielectric alone. 

2.3. Coritribution of jield-oriented permanent dipoles 
If the liquid molecules possess a permanent dipole moment p, the presence of a 

low-frequency electromagnetic field will orient the dipoles to give a non-zero contri- 
bution to the field along the electric field vector. We may distinguish two extreme 
types of situation : 

(i) The  dielectric constant d is large 
(ii) The  dielectric constant d 1: n2, IZ being the liquid refractive index at the 

T h e  mean orientation of the permanent dipoles will depend upon their potential 
energy in the electric field in relation to their thermal energy (AT). When the system 
of molecules and incident electromagnetic field has reached a dynamic equilibrium 
the permanent dipoles will contribute to the field along the external electric field 
vector. It is the potential energy of a permanent dipole in this total field that must be 
used to determine the mean orientation which in turn determines the magnitude of 
the permanent dipole distribution. When determining the expression for the dielectric 
constant this permanent dipole field contribution must be written as a function of the 
dielectric constant, leading to a rearrangement of the equation. The magnitude of this 
extra field will be of the order of pcos 8, 8 being the mean orientation angle which in 
its first approximation depends upon p /AT ,  therefore this term is proportional to 
( d - n 2 )  which is very small for case (ii), but large for case (i). In  neglecting this 
contribution as we do here, we are in fact restricting the applicability of our derived 
expression to case (ii). We further restrict the model to those molecules with a 
permanent dipole and an isotropic polarizability, i.e. molecules which are isotropic 
with respect to the transition dipole moments of their excited states. This is the usual 
model involved in the derivation of the Clausius-Mossotti equations whose analogue 
we wish to derive here. Because of the restriction to case (ii) we do not expect our 
expression to be correct for liquids of high dielectric constant, any alteration due to 
molecular anisotropy will also not be reproduced. 

In  the presence of the low-frequency electromagnetic field, the oriented permanent 
dipoles (lying along the electric field vector) will lie in the polarization field due to 
the surrounding molecules. The  part of this field due to the excitation of collective 
liquid states described by the wave function (9b)  leads to a mixing in of excited states 
into the ground-state wave function. The  part due to the oriented permanent dipoles 
will give an energy shift to the molecular ground state, redefining the energy zero 
without changing the coupling to the electromagnetic wave. 

Correcting the oriented ground-state wave function (DGO for interaction with the 
excited states gives 

appropriate frequency. 

where (33) is obtained in the same way as (30). The  interacting states are again 
assumed to be corrected for all interactions except that of the ground state. From 
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(33) the corrected oriented dipole moment p c  is given by 

where QG is the wave function for the non-oriented state, and n(0) is the static refrac- 
tive index. 

When deriving the expression (32) the matrix element H o ,  is taken to be zero 
in evaluating r ( w ) .  H,, is the self energy of the initial state which comprises ground 
state molecules and field. When the molecules possess no permanent dipole moment 
it is zero. For molecules with permanent dipole moments however, the self energy 
is that of orientation of the dipoles in the presence of the field. This is given by the 
average over all 6’ of H,, 

HOo < @ G I - P ~ ~ ~ ~ c o s ~ I @ ~ O )  ( 3 5 )  
where d is the angle between the dipole moment p and the field polarization vector. 

states (Onsager 1936) and is 

k is the Boltzmann constant. If the matrix element (35) is described in second quantized 
form, it is seen to be quadratic in photon creation and annihilation operators. The  
orientation of the dipole corresponds to an initial state of photon and unoriented 
molecule, and a final state of scattered photon and oriented molecule, that is to simul- 
taneous absorption and emission of a photon by the molecule to be oriented. 

The  mean value of cos d is found from the Boltzmann distribution of oriented 

pnCe1/3kT (36 )  

Substituting ( 3 )  for em1 the matrix element H,, becomes 

w is the frequency of the interacting field, and n’ the refractive index of the medium 
neglecting the dipole orientation, and evaluated at W .  Including this term in (17) for 
F(w) and substituting in (16)  we obtain an expression corresponding to (22): 

4v {.(0)2 + 2yp2 d = a”+ ___ 
9 k T V o  3 

where the interaction of all the excited states with the field has been included in 
( E ’ ) ~ ,  arising from the reduced form of the molecule-field interaction operator given 
by (1). 

Expression (38) may be arranged in a similar way to that previously to give 

d - 1  n”-1 4 n  p 2  {n(0)2+2}2 +-- 
d+2 n f 2 + 2  9 h T  V ,  (d+2)(n’*+ 2)‘ 
-- -- (39 )  

This modification of the Clausius-Mossotti equation is, to be compared with that of 
Onsager (1936) who gives 

The factor multiply multiplying 4np2 /9kTVo ,  f ( d ,  n2) is plotted in figure 1 for the 
two equations. The  Clausius-Mossotti equation is obeyed when this is 1. The two 
expressions agree with each other and the Clausius-Mossotti equation when d is 
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equal to n2. The derived expression shows poor agreement in the region d < n2, 
the peak given by Onsager’s expression is not obtained and the value for d = 1 is 
large and depends upon the value of n2. For d > n2, f(d, n2) from (39) shows the 

1 2  4 5 8 IO 
d 

Figure 1. Comparison of f(d, n2) for expressions (40) and (39). Values are 
given for nz = 1, 2 ,  4, labelled A, B and C respectively. 

? ( $1 ] expression (4) 

( i! i ] expression (43). 

0 n 2 = 4  

same shape as Onsager’s curve and in the region of d $>n2 has a limiting value which 
is one third less than that of (40). 

On comparing with the experimentally deduced relationship (Wyman 1936) 

4 ~ p d  
9kTA 

for which A is found to be between 6.2 and 11, Onsager (1936) shows that these values 
of A correspond to a range of refractive indices given by 

1.25 < n < 1.64. 
Our expression would give a slightly higher range for n of 

1-5 < n < 1.94 

which are still reasonably acceptable values. 
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Therefore in the regions (d N d') for which our model applies we find a quanti- 
tative agreement between our expression and that of Onsager determined from the 
electrostatic reaction field. For large values of d the same form for the relationship is 
obtained without qualitative agreement. It is therefore to be expected that calcula- 
tions of the spectral solvent effect based on the model advanced should show good 
agreement with those found from the use of reaction fields, for solvents with low 
dielectric constants, and at least qualitative agreement for solvents with high dielectric 
constant. 

3. Conclusions 
We have shown here that the Debye equation previously obtained by electrostatic 

arguments can be obtained from a microscopic treatment of a homogeneous liquid 
system by the inclusion of non-resonance excitation exchange interactions between 
a representative molecule and all other molecules of the medium. Therefore, when 
applying quantum mechanics to calculations of such a system, the inclusion of inter- 
molecular interaction must be regarded as the inclusion of the Lorentz cavity field. 
Formulations which include both as separate effects are incorrect. The  application 
t o  polar liquids demonstrates a qualitative similarity to Onsager's (Onsager 1936) 
theory of reaction fields for d > n2, and should therefore give results in qualitative 
agreement with those derived from the use of reaction fields in this range. In  the 
region d < n2 there is little relationship, however these values of d are not often 
found in practice. Expressions identical to those of Onsager should be obtained by an 
application of perturbation theory to higher orders. 
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